What is Big Think?  

We are Big Idea Hunters…

We live in a time of information abundance, which far too many of us see as information overload. With the sum total of human knowledge, past and present, at our fingertips, we’re faced with a crisis of attention: which ideas should we engage with, and why? Big Think is an evolving roadmap to the best thinking on the planet — the ideas that can help you think flexibly and act decisively in a multivariate world.

A word about Big Ideas and Themes — The architecture of Big Think

Big ideas are lenses for envisioning the future. Every article and video on bigthink.com and on our learning platforms is based on an emerging “big idea” that is significant, widely relevant, and actionable. We’re sifting the noise for the questions and insights that have the power to change all of our lives, for decades to come. For example, reverse-engineering is a big idea in that the concept is increasingly useful across multiple disciplines, from education to nanotechnology.

Themes are the seven broad umbrellas under which we organize the hundreds of big ideas that populate Big Think. They include New World Order, Earth and Beyond, 21st Century Living, Going Mental, Extreme Biology, Power and Influence, and Inventing the Future.

Big Think Features:

12,000+ Expert Videos

1

Browse videos featuring experts across a wide range of disciplines, from personal health to business leadership to neuroscience.

Watch videos

World Renowned Bloggers

2

Big Think’s contributors offer expert analysis of the big ideas behind the news.

Go to blogs

Big Think Edge

3

Big Think’s Edge learning platform for career mentorship and professional development provides engaging and actionable courses delivered by the people who are shaping our future.

Find out more
Close
With rendition switcher

Transcript

Question: What makes the Large Hadron Collider an important advance?

Melissa Franklin: Well, on the one hand, it’s just higher energy. Fermilab has a center of mass energy, total center matching 2TEV and Large Hadron Collider is 14TEV when it’s finally, after a while it will be 14 TEV. So, you’re just going to a higher energy which means you can really probe smaller distances, which you can make higher mass particles because you’ve got more energy. And so just from an experimentalist point of view, it’s just way cooler and we probably will see something interesting. From a theorist point of view, it reaches the energy where they say this symmetry breaking cause must show itself. It has to show itself, actually there’s an argument that probability is violated. The probability will be greater than one, unless we see something happening. So those are the two different views. So, in fact, the Large Hadron Collider is going to start at a lower energy than 14 TEVs, its going to start at 7 because there are some technical problems. And a lot of the experimentalists are still incredibly happy because for us it’s something new. You’re looking somewhere you’ve never looked before and it’s fascinating to see. The theorists are a little bit more grumpy. I don’t know if you’ve noticed, but in the New York Times and stuff, they’re very grumpy and they’re saying, “This is unacceptable.” Like I can’t believe it’s not going to turn on you and I’m getting old. That kind of a thing. So, those are the two different views. But everybody’s excited that it will turn on. It’s extremely difficult. These machines are extremely complicated. It’s extremely difficult to get them up and running. It usually takes a couple of years.

Question: What cool things could the LHC reveal?

Melissa Franklin: Okay, so I’m just interested to see what happens. There’s these string theorists, you probably know about them because they’re often in the news. And apparently they’re very smart. And they say there’s a new symmetry, which is very exciting. A new space-time symmetry called Super Symmetry so for all the particles we have they’re a Super Particle partners. Okay? Now, the symmetry would say that the Super Particle partners would have exactly the same mass as the particles, but that’s not true. We already know that. So, there’s a symmetry breaking there. But the String Theorists believe the Super Symmetry must exist even if incredibly badly broke. So they are absolutely hoping that we will find Super Symmetry and we are absolutely looking for them. And so, there’s a lot of experimentalists who do what the theorists say, unfortunately. And they are looking for Super Symmetry. And there’s other people who are looking – more renegade and I don’t know what they will find – or I will find.

Question: Is it a legitimate fear that the LHC could create an Earth-consuming black hole?

Melissa Franklin: Well, it’s a great idea, and people have written papers you know ten years ago. Could you create a really tiny black hole at a collider? And then the problem we were always thinking of, well how – this is funny because we were always thinking, well how would you know that you had created a black hole? Because it would decay immediately into – not only would decay, it would decay into hundreds of particles all very low energy and how could you tell? So, we were always thinking of not of the problem of creating a black hole, but how would we possibly see it before it’s completely gone? And we convinced ourselves that Fermilab for instance that we couldn’t. We wouldn’t even know if we made black holes. So, it was a big surprise to me that all of a sudden people were really worried that we were doing to make one so big that not only would we see it, but that it would devour the whole earth. So, I mean [you can] put out a report that says that the likelihood is incredibly small, but still you can’t say it’s zero. But I think it would be fast. It might be an interesting way to go. You wouldn’t have a lot of time to worry like in all those apocalyptic films where it takes a long time. So, I just tell the people that it’s incredible – the probability is incredibly small, and on the other hand, it wouldn’t be so bad.

Question: When the LHC opens, what will happen to Fermilab?

Melissa Franklin: A children’s toy – Well Fermilab is still running. And in fact, Fermiab is going to continue running until we actually see that the LHC is working. It’ll probably run for another year. It’s possible you could see the Higgs Boson if you are very lucky. It’s possible – and it’s there. It’s possible that you could see it at Fermilab, but it’s very unlikely. I don’t know. There’s so few people working on the collider at Fermilab now it might be hard to find anything. I guess it is sad. I worked on that for 25 years.

Question: Will it be hard to say goodbye?

Melissa Franklin: I have a problem separating. Yeah, I guess so. Actually, more than 25 years. It’s sad.

Recorded on: October 21, 2009

 

A Quick and Painless Black ...

Newsletter: Share: