What is Big Think?  

We are Big Idea Hunters…

We live in a time of information abundance, which far too many of us see as information overload. With the sum total of human knowledge, past and present, at our fingertips, we’re faced with a crisis of attention: which ideas should we engage with, and why? Big Think is an evolving roadmap to the best thinking on the planet — the ideas that can help you think flexibly and act decisively in a multivariate world.

A word about Big Ideas and Themes — The architecture of Big Think

Big ideas are lenses for envisioning the future. Every article and video on bigthink.com and on our learning platforms is based on an emerging “big idea” that is significant, widely relevant, and actionable. We’re sifting the noise for the questions and insights that have the power to change all of our lives, for decades to come. For example, reverse-engineering is a big idea in that the concept is increasingly useful across multiple disciplines, from education to nanotechnology.

Themes are the seven broad umbrellas under which we organize the hundreds of big ideas that populate Big Think. They include New World Order, Earth and Beyond, 21st Century Living, Going Mental, Extreme Biology, Power and Influence, and Inventing the Future.

Big Think Features:

12,000+ Expert Videos

1

Browse videos featuring experts across a wide range of disciplines, from personal health to business leadership to neuroscience.

Watch videos

World Renowned Bloggers

2

Big Think’s contributors offer expert analysis of the big ideas behind the news.

Go to blogs

Big Think Edge

3

Big Think’s Edge learning platform for career mentorship and professional development provides engaging and actionable courses delivered by the people who are shaping our future.

Find out more
Close

Monkeys Can Do Basic Math Using Symbols

April 26, 2014, 5:00 PM
Bt_monkeys_final

Editor's Note: This article was provided by our partner, RealClearScience. The original is here.

It has been long thought that one of the characteristics that makes humans unique is our ability to learn and manipulate symbols for communication. However, this notion is starting to slowly unravel. Koko the gorilla knows sign language, and Alex the parrot was probably the most well-spoken bird to have ever existed. Also, a chimpanzee was trained to use Arabic symbols to add up sums as large as 4, and monkeys were taught to add dots together.

But that's all child's play; monkeying around, if you will. Now, PNAS reports that a team of Harvard and Yale researchers has trained rhesus macaque monkeys to recognize two sets of symbols, with 26 symbols in each set. And the monkeys demonstrated an ability to add them together!

The monkeys were given a touch-screen device that was divided in two halves. In the first stage of the experiment, the monkeys had to determine which side had the greater amount. First, they had to examine dots. Second, they had to examine Arabic numerals (1-9) or letters (which represented numbers 10-25). Finally, they had to examine Tetris-like symbols which represented numerical values. To keep the monkeys playing, they were given drops of liquid treats that corresponded to the value they chose, regardless of whether they picked the right answer. (For example, if the choice is between 4 and 8 and the monkey picked 4, he would get four drops.) Obviously, larger values mean more treats, so the monkeys had an incentive to learn how to recognize the larger value.

In the second stage of the experiment, the monkeys were again prompted to choose the greater of two values. This time, one side displayed two symbols ("addends"). The monkeys had to determine if the sum of the addends was greater than the single value on the other side of the screen. It took them several weeks to get the hang of this, but they eventually caught on. 

But the researchers weren't satisfied with simply knowing that monkeys could do basic math. They wanted to know what the monkeys were thinking.

Digging more deeply into the monkeys' selections, the authors discovered that, at first, the monkeys were ignoring the smaller addend. For example, if one side of the screen displayed 3 and 7, the monkey essentially ignored the 3. Only after several weeks did the monkeys learn that they needed to add 3 and 7 together to determine the correct answer. Even then, the monkeys greatly undervalued the smaller addend.

This result, however, does not necessarily demonstrate that monkeys were performing a calculation. It is possible that the monkeys had simply memorized number combinations. To determine if the monkeys were actually doing math or were simply recalling memorized patterns, the researchers tested the monkeys with another addition task utilizing the Tetris-like symbols. If they were memorizing symbols, it should take the monkeys just as long as it did previously to determine the correct answers. However, they were much faster at learning this task. This implies that pattern memorization is an unlikely explanation. Instead, the monkeys had transferred the skill of arithmetic to evaluate the Tetris-like symbols.

More evidence in favor of calculation rather than memorization occurred when the monkeys were presented with choices such as 5 + 7 versus 8. A monkey may be inclined to pick 8 because the number 8 is larger than both 5 and 7. However, 8 is the incorrect answer. Even on this difficult task, the monkeys more quickly learned how to pick the correct answer using the Tetris-like symbols, lending further support to the conclusion that the monkeys had learned arithmetic with the numerals/letters and transferred the skill to a new set of symbols.

As impressive as these results are, the monkeys' arithmetic was not terribly accurate if the compared values were similar. For example, choosing between 4 + 6 and 9 was a bit too difficult. So, you may want to hold off on hiring a chimpanzee accountant.

Source: MS Livingstone et al. "Symbol addition by monkeys provides evidence for normalized quantity coding." PNAS. Published online before print: 21-Apr-2014. doi: 10.1073/pnas.1404208111

 

Monkeys Can Do Basic Math U...

Newsletter: Share: