What is Big Think?  

We are Big Idea Hunters…

We live in a time of information abundance, which far too many of us see as information overload. With the sum total of human knowledge, past and present, at our fingertips, we’re faced with a crisis of attention: which ideas should we engage with, and why? Big Think is an evolving roadmap to the best thinking on the planet — the ideas that can help you think flexibly and act decisively in a multivariate world.

A word about Big Ideas and Themes — The architecture of Big Think

Big ideas are lenses for envisioning the future. Every article and video on bigthink.com and on our learning platforms is based on an emerging “big idea” that is significant, widely relevant, and actionable. We’re sifting the noise for the questions and insights that have the power to change all of our lives, for decades to come. For example, reverse-engineering is a big idea in that the concept is increasingly useful across multiple disciplines, from education to nanotechnology.

Themes are the seven broad umbrellas under which we organize the hundreds of big ideas that populate Big Think. They include New World Order, Earth and Beyond, 21st Century Living, Going Mental, Extreme Biology, Power and Influence, and Inventing the Future.

Big Think Features:

12,000+ Expert Videos

1

Browse videos featuring experts across a wide range of disciplines, from personal health to business leadership to neuroscience.

Watch videos

World Renowned Bloggers

2

Big Think’s contributors offer expert analysis of the big ideas behind the news.

Go to blogs

Big Think Edge

3

Big Think’s Edge learning platform for career mentorship and professional development provides engaging and actionable courses delivered by the people who are shaping our future.

Find out more
Close

Monday Musings: Examining the innards of a volcano and silicic volcanism on the Moon

September 20, 2010, 10:54 AM
Lpod-2004-03-02.small

I'm still playing catch-up from the field trip, but there is a pile of news - mostly research-related rather than new eruptions - so I thought I'd whip up a short post:

Probing active volcanoes: We might soon be able to check out the innards of a volcano if Dr. Alton Horsfall and his group from Newcastle University's Centre for Extreme Environment Technology are right. They have developed a silicon carbide module that can be dropped into a volcanic system and withstand temperatures up to 900C. This module could then wirelessly transmit geological information on the volcanic system, such as gas content/flux, temperature and more, helping in monitoring the volcano. Now, before you get too excited, although 900C is hot, there are a lot of magmas - from basalt to rhyolite - that are hotter. Also, it might be tough to wirelessly transmit through, say, 100 meters of molten magma, so likely the best use of the unit would be in the crater of a volcano, so that information that is collected remotely could be collected at the sight - such as the temperature of a growing dome or the changing gas flux at a crater vent (until its shot out of the crater or buried in rubble!). I also wouldn't say this device will "predict volcanic eruptions", but needless to say, the module sounds very cool - and let's hope that it works.

Silicic volcanoes on the Moon: There is also a new study in Science suggesting that the Earth's Moon might have produced very minor siiicic volcanism in the past. Most of the lunar lavas we see or have sampled on the surface of the moon are mafic (low silica) rocks, such as basalts (although a few lunar anorthosites, a plutonic rock, were also sampled). They tend to form lava flows - think Hawai`i. It was believed that the moon predominantly experienced basaltic magmatism, but a new feature identified on the lunar surface might be the product of silicic magmatism - the stickier brand of magma that can be more explosive or form thick domes. The feature, called Hansteen Alpha, likely formed over 2 billion years ago, and Timothy Glotch and his coauthors say that the shape of the feature and its spectral pattern (which tells us about its composition) are definitive proof of silicic volcanism on the Moon. This dome on the Moon could be similar to the "pancake domes" we've observed on  dominantly-basaltic Venus. Even on Earth, we sometimes find silicic magma where almost everything else is basaltic - such as the rhyolites of Iceland or dacite of Hawaii - so most likely the silicic magma on the Moon is a product of fractionation of basalt. Remember, as a basalt cools, minerals form, settle out and the remaining liquid magma will have a different composition, one that is more silicic. Do this long enough in the right conditions, and you can produce a silicic magma that could erupt. So, although it is cool to find proof of silicic volcanism, it is also not entirely surprising.

Top left: A view of Hansteen Alpha (middle), believed to be a silicic dome complex on the Moon, the first to be identified.

 

 

Monday Musings: Examining t...

Newsletter: Share: