Skip to content
Guest Thinkers

Thurs. @ NYAS: Public Communication Re-Considered


The NY Academy of Sciences offers a stunning venue for public talks, forums, and receptions, with a view from the 40th floor of 7 World Trade Center.

Thursday morning I will be heading up to New York to give a 7pm talk at the New York Academy of Sciences. A crowd of more than 100 is expected for what I am hoping to be an interesting discussion and entertaining reception to follow. (Register for free here.)

Here’s a brief preview of what I will be talking about followed by more specific details:

Over the past few years there have been signs of a major shift in how the scientific community in the United States views public engagement. Left behind is the assumption that simply informing an audience of the facts of science will meaningfully alter perceptions or decisions. Instead, one can detect a growing recognition that effective communication involves addressing an intended audience’s values, interests, and worldviews.

Yet despite these new directions and initiatives, many communication efforts continue to be based on ad-hoc, intuition-driven approaches, paying little attention to interdisciplinary research on what makes for effective public engagement. Most notably, these initiatives start with the false premise that deficits in public knowledge are the central culprit driving societal conflict over science, when in fact, science literacy has only a limited role in shaping public perceptions and decisions.

In the talk, I review what we know from recent communication research about how the public arrives at judgments about controversial areas of science, highlighting successful communication initiatives and notable mistakes from a range of science debates including climate change and evolution.


In the last third of the presentation I close with a bold vision of the future, specifically a discussion of what can and should be done to move forward with more effective public engagement.

In fact these recommendations derive in part from a manuscript I am working on with my friend Dietram Scheufele, intended for a special upcoming journal symposium on the future of science communication.

In a way its an updated, bigger picture on the arguments we made in the cover article we wrote last year for The Scientist. It also draws upon insights and lessons learned from talks at a diversity of venues over the last year, our work with organizations such as the National Academies, and the studies we have published in the area.

Below the fold are details on our conclusions from the first draft of the manuscript:


Ironically enough, on issues such as smoking or HIV education, scientists have few reservations about employing techniques borrowed from marketing, advertising, and political campaigns. Yet deficit-model thinking continues to generate a strongly emotional reaction to the suggestion that scientists use similar strategies to engage the broader public on other science-related debates.

In this matter then, science communication stands at a crossroads. We have entered an era where most policy debates and emerging technologies are no longer merely scientific issues. Rather, they are collectively decided in the context of politics, values, and culture. Under these conditions, sophisticated public outreach is essential for overcoming policy gridlock on climate change, for shoring up support for the teaching of evolution in schools, for ensuring funding for research programs in emerging areas such as plant biotechnology and nanotechnology, and for effectively communicating with a wider public on almost any issue.

To conclude, we detail several recommendations for new directions in public communication, paths forward derived from the research and principles reviewed in this essay.

Graduate training and new interdisciplinary degree programs. College and doctoral students majoring in the sciences should be offered courses and training in communication. These courses introduce young scientists to much of the research reviewed in this essay, focusing on the relationships between science, the media, and society, and providing valuable professional know-how and skills. There is also the demand for new inter-disciplinary degree programs that combine course work in communication, the sciences, policy or law, sociology, and other fields. Graduates of these programs are likely to find jobs in the news media, the high-tech industries, the government sector, or at research institutions, public affairs strategy firms, and not-for-profits. These new graduate programs would be the pedagogical equivalent of the on-the-job training that the successful AAAS policy fellows program provides Ph.D. scientists or that the Aldo Leopold fellows program offers mid-career scientists.

Some critics of our proposals have argued that scientists should stick to research and let media relations officers and science writers worry about translating the implications of that research (Holland et al., 2007). They are right: In an ideal world that’s exactly what should happen. Yet in reality, scientists will be the key individuals who will be giving the interviews, testifying before Congress or addressing local community forums. Perhaps even more importantly, as senior decision-makers, many scientists are ultimately responsible for setting communication policy at scientific institutions, agencies, and organizations. These leaders need to understand how research can and should inform public communication on all issues.

Public dialogue that matters. As reviewed, public dialogue initiatives have many positive uses but also several limitations. In order to enhance public participation, significant resources need to be spent on sampling, recruitment, and turn-out. Multiple meetings should also be held across dates and locations. In this case, success is a function of money and careful planning. Another strategy to boost public interest in these types of meetings is to pair expert testimony and deliberation with the viewing of a documentary or series of short films. These “deliberative screenings” can not only increase public turn out, but also help frame discussion and thinking in ways that might bridge polarized views. They also provide an additional outlet and repurposing for many NSF-funded films and media productions.

The scope and impact of public dialogue initiatives can also be expanded by generating local and national news attention to the event. Not only does this news attention reach a larger audience with a message that scientists are open to public input, but coverage is likely to reflect the types of frames that the meetings were organized around. For example, a recent study found that a public consultation exercise on nanotechnology generated discussion that was framed mostly in social progress terms, accenting the benefits to society (Besley et al., 2008).

A commitment to early consultation and to a genuine role for participants’ recommendations can only come with the realization that sometimes a competent, informed, and engaged public might reach collective decisions that go against the self-interest of scientists. For example, at a recent public consultation exercise on nanotechnology, though the recommendations were not binding as policy, one of the outcomes was that several recruited participants decided to subsequently form their own local advocacy group to monitor the development of nanotechnology in the area (Powell & Kleinman, 2008).

Data should trump intuition. Efforts to use the media and communication campaigns to engage the public on science need to adapt to the realities of today’s information environment. Many approaches to science communication and outreach still rely heavily on traditional channels, such as science television or newspapers. Recent survey data, however, suggests that we are seeing significant shifts from television (which is still the primary source of information for three quarters of respondents 65 years or older) to online sources (which are the preferred medium for more than half of the under 24 year olds) (Pew, 2008b). The same data also show that interest in science-related issues is highest among respondents who relied mainly on new information technologies for news, as opposed to traditional mass media channels.

Effective public communication is not a guessing game; it is a science–which means it is based on data. Public opinion research allows us to get a very accurate picture over time of exactly what different groups in society want to know about climate change, evolution, biotechnology, or nanotechnology, about potential implications for their daily lives, about what their concerns are, and who they are looking to for answers (Scheufele, et al., 2007). Relying on systematic research to understand and communicate effectively with different publics is therefore critical to understanding how the public thinks about new technologies, what they know, and what the informational channels are to reach them most effectively.

Quality research, of course, is expensive. Recent calls for the National Science Foundation to fund more direct research on science communication are welcome developments as is the leadership role played by the National Academies in commissioning audience research on evolution. Similarly, the National Academy of Engineering recently issued recommendations for recruiting women and minorities into careers in science and engineering, relying on empirical audience research and principles of strategic communication (Committee on Public Understanding of Engineering Messages 2008).

Connecting to public values. Effective communication will necessitate connecting a scientific topic to something the public already values, emphasizing shared common ground. And in people’s minds, these links are critical for making sense of scientific information. A number of recent studies examine how values shape the interpretation of scientific information. Findings on religiosity, for instance, show that the exact same information can translate into very different attitudinal conclusions for highly religious respondents than for non-religious ones (Brossard, Scheufele, Kim, & Lewenstein, forthcoming; Ho, Brossard, & Scheufele, 2008; Nisbet & Goidel, 2007; Nisbet, 2005; Nisbet & Nisbet, 2005). In other words, we may be wasting valuable time and resources by focusing our efforts on putting more and more information in front of an unaware public, without first developing a better understanding of how different groups will filter or reinterpret this information when it reaches them, given their personal value systems and beliefs. Recent research also suggests that these value-based filters may in fact differ across different cultures or national settings (Scheufele, Corley, Shih, Dalrymple, & Ho, forthcoming).

Science communication that does not focus on elite audiences. As mentioned earlier, some critics argue that it would be unethical to take advantage of strategic communication tools in order to make scientific issues more relevant to a general public. But recent data on potentially widening knowledge gaps suggests that it may be unethical if we did not use all communication tools at our disposal in order to connect with hard-to-reach audiences (Scheufele & Brossard, 2008).

Many traditional approaches to public communication about science, for instance, have inadvertently favored elite audiences. In fact, some previous attempts to connect across diverse sections of the public have resulted in widening gaps between the already information rich and the information poor. This is partly due to likelihood of exposure. Almost 40% of college-educated respondents, for instance, visited a science or technology museum in 2006, compared to less than 10 percent for respondents with a high school education or less (National Science Board, 2008).

As a result, museum exhibits, science Web sites, traditional science documentaries, and similar outreach efforts may inherently favor elite audiences. Widening gaps between the information rich and information poor are also a function of the way issues like nanotechnology and biotechnology play out in public discourse. In their research on “knowledge gaps,” Phil Tichenor and his colleagues (1970) found that audiences with high socioeconomic status (SES) showed much stronger learning effects from health related information than low-SES audiences. This effect is in part due to the fact that TV shows like PBS’ NOVA or the Science section of the New York Times tailor their content to highly educated audiences. As a result, learning effects for mass audiences are minimal, even if these audiences happen to tune in to NOVA or read an article in the New York Times.

Consider alternatively, that surveys show that local television news is among the dominant sources of public affairs-related information for the American public. Therefore, in order to reach non-traditional audiences, scientists and their organizations need to be on local television news. Major national communication efforts should be closely coordinated across local media markets, with specific scientists, institutions, or organizations serving as the local angle and spokesperson.

A recent National Academies (2008) initiative that pairs scientists as consultants on major motion pictures and television series is also a step in the direction of reaching new audiences. Long used as a strategy for engaging the public on public health issues (Kaiser, 2004; Montgomery, 2007), active involvement with Hollywood in the construction of messages about science can lead to a range of outcomes including informal learning, enhanced interest and attention to science in news coverage and other media, the modeling of positive behavior related to environmental sustainability or energy use, the favorable framing of controversial issues such as the teaching of evolution in schools, or even a spike in news or policy attention to a scientific topic such as climate change (Nisbet, 2008; Nisbet, 2007).

Other important media outlets for expanding audience reach include comedy news programs such as The Daily Show and The Colbert Report. Studies have documented the ability of these programs to engage younger, harder to reach audiences about political candidates and election campaigns, shaping their political attitudes and levels of political knowledge (Feldman, 2007; Feldman & Goldthwaite-Young, 2008). On science, a recent Pew (2008c) analysis finds that The Daily Show includes comparatively more attention to science and technology topics than the mainstream press and significantly more attention to climate change. These programs also generate buzz online with heavily-trafficked and forwarded clips on hot-button science topics such as evolution, genetics, climate change, or stem cell research. Additionally, both shows frequently feature scientists and science authors as interview guests, examples including Neil deGrasse Tyson and Brian Greene.

Given that satire and comedic news is an increasingly preferred media format for younger audiences, more research is needed on the potential for using this style of humor as a tool for public engagement on science. Little is known, for example, about the comparative effects of science information communicated in satirical form compared with the same information communicated in traditional science media. Greater understanding in this area would inform not just media strategy but also the incorporation of humor and satire into the production of documentary film, Web, and museum content.

Opinion leader campaigns that bridge audience gaps. With so much focus on media strategy, it is important not to forget that perhaps the most effective strategy for connecting with difficult to reach audiences are face-to-face conversations and other interpersonal channels. In this matter, science organizations need to mobilize specially trained opinion-leaders who can bridge the communication gap between news coverage and inattentive audiences, talking up to their friends, family, and co-workers the relevance of science-related issues such as climate change or the teaching of evolution in schools.

We know that these science opinion-leaders exist and can be recruited. For more than sixty years, researchers have traced the influence of news and advertising messages in local communities, identifying a small group of opinion-leading individuals who pay close attention public affairs and advertising, discuss what they learn from the media with a diversity of others, and appear to be more persuasive in convincing others to adopt an opinion or course of action. In this “two step-flow of information,” opinion-leaders do not necessarily hold formal positions of power or prestige, but rather serve as the connective communication tissue that alerts their peers to what matters among political events, social issues, and consumer choices (Lazarsfeld, Berelson, & Gaudet, 1948). Over the past decade, as audiences have become more difficult to reach and less trustful of the media, this research has informed innovative communication campaigns in the areas of public health, politics, and consumer marketing. Yet despite the widespread targeting of opinion-leaders in these other fields, science organizations have traditionally overlooked this important dimension of public engagement.

Several validated measurement techniques exist for identifying individuals with opinion-leader like qualities in surveys and questionnaires. Once recruited and trained, audience-tested messages, such as those developed by the National Academies on evolution, can be matched to an opinion-leader’s social background and network. Moreover, when “surges” in communication and public attention are needed –such as surrounding the release of a future IPCC report or a major state legislative vote on evolution– opinion leaders can be activated with talking points to share in conversations with friends and co-workers, in emails, in blog posts, or letters to the editor (see Nisbet & Kotcher, 2009, for an overview).


Related

Up Next