What is Big Think?  

We are Big Idea Hunters…

We live in a time of information abundance, which far too many of us see as information overload. With the sum total of human knowledge, past and present, at our fingertips, we’re faced with a crisis of attention: which ideas should we engage with, and why? Big Think is an evolving roadmap to the best thinking on the planet — the ideas that can help you think flexibly and act decisively in a multivariate world.

A word about Big Ideas and Themes — The architecture of Big Think

Big ideas are lenses for envisioning the future. Every article and video on bigthink.com and on our learning platforms is based on an emerging “big idea” that is significant, widely relevant, and actionable. We’re sifting the noise for the questions and insights that have the power to change all of our lives, for decades to come. For example, reverse-engineering is a big idea in that the concept is increasingly useful across multiple disciplines, from education to nanotechnology.

Themes are the seven broad umbrellas under which we organize the hundreds of big ideas that populate Big Think. They include New World Order, Earth and Beyond, 21st Century Living, Going Mental, Extreme Biology, Power and Influence, and Inventing the Future.

Big Think Features:

12,000+ Expert Videos

1

Browse videos featuring experts across a wide range of disciplines, from personal health to business leadership to neuroscience.

Watch videos

World Renowned Bloggers

2

Big Think’s contributors offer expert analysis of the big ideas behind the news.

Go to blogs

Big Think Edge

3

Big Think’s Edge learning platform for career mentorship and professional development provides engaging and actionable courses delivered by the people who are shaping our future.

Find out more
Close

The Standard Model Passes 'Most Stringent Test to Date'

July 19, 2013, 2:16 PM
1000516_631926946828320_2093146588_n

The decay of a Bs (B-sub-s) particle into two muons is one of the "rarest measureable processes in physics."

How rare? Only a handful of Bs particles per billion will decay into pairs of muons, as The Standard Model of particle physics predicts. That prediction was put to the test by scientists at CERN, who measured a process that was described as one of the "most stringent tests to date" of the Standard Model. 

“This is a process that particle physicists have been trying to find for 25 years,” said spokesperson Joe Incandela. “It demonstrates the incredible capability of the LHC and experiments like CMS that are able to detect such a rare process involving a particle with a mass that is roughly 1000 times smaller than the masses of the heaviest particles we are searching for now.

Read more here

 

The Standard Model Passes '...

Newsletter: Share: